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The problem of the tension and shear on a plane isotropic medium weakened by 

a doubly-periodic system of rectilinear cracks is considered. General represen- 

tations are constructed for the solutions describing a class of problems with doub- 
ly-periodic stress distribution outside the cracks. The fundamental singular equa- 

tion of the problem is reduced to an infinite system of linear algebraic equations 
without the intermediate step of reducing it to a Fredholm equation. The proce- 

dure to determine the stress intensity factors is written out. 
Questions related to modeling the described lattice by a continuous isotropic 

medium are examined and the elastic characteristics of this latter are determ- 

ined (the macroscopic parameters of a medium with cracks). Results of compu- 

tations are presented. 
The doubly-periodic problem for a symmetric rhombic lattice has been con- 

sidered by another method in [ 1. 21. 

1. Formulation of the problem. Let the meanstresses S,. S, and S,, 
(Fig. 1) act in an unbounded isotropic plate weakened by a doubly-periodic system of 

Fig. 1 

rectilinear cracks. We assume that identical self-equilibrated loads 

P (x) = uy* (2) + i& (2), 1 E [--I, 11 

are given at congruent, HLllder-continuous, points on the crack edges. Let 

(01, 02 \I111 wi ~= 0. Im o2 / oi > 0) 

denote the fundamental periods, and D the domain occupied by the plate material. 

We place the beginning and ending of the cracks, respectively. at the points 

a53 
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-1 + mm1 + no,, 1 + mo, t ncoz 

(m, n =- 0, + 1, -&- . . . . 0 < z< 01 / 2) -_ 

By virtue of the symmetry of the boundary conditions and the geometry of the domain 

D , the stresses in D are doubly-periodic functions with the fundamental periods o)i 
and 0s. 

Following [3], we introduce a function analytic in D 

Iri (2) = Y (z) + 0 (z) + 2.w (4 (1.1) 

In combination with the analytic function @ (z) , this function uniquely determines the 

stresses and displacements in the domain under consideration. We have [3] 

o* + o, = 4Re 0 (z) 0.2) 

@v - ox + 2iz,, = 2 {a (z) - CD (2) - (z - zp (2)) 

by + irxy = a (2) + CD (z) - (z - Z)W (z) 

26 (u - iv) = xCp) - 0 (2) - (Z - z)<D (z), z (2) = J 0 (z)dz 

Conditions for periodicity of the stresses 

CD (2 + 0,) = CD (z), Q (z + 0,) - sz (2) = (0, - i&y)@’ (2) (1.3) 

v=i, 2 

follow from (1.2). 
It is expedient to construct the functions 0 (z) and @ (z) in such a manner that, 

firstly, a given jump in the combination 0; -/- ir,, would be assured in going fromone 

crack edge to its opposite, and secondly, the periodicity conditions (1.3) would be satis- 

fied automatically. The desired representations are 

m(z) = & i P(x),~(x - z)dx + A (1.4) 

-1 

P (z) = F+(x) - F-(x) 

Here o (2) and 5 (z) are Weierstrass functions [4], pi (z) is a special meromorphic 
function ~5, 61, F (x) is the jump in the expression or, (z) + ir,v (x) in i-l, 11, 
A and B are constants governed by the static conditions, and p (cc) is the desired, gene- 
rally complex, function in (--1, 1). Let us append an additional equality expressing the 
condition that the displacements are unique in D 

1 

s p (x) dx = 0 0.5) 
--I 

to the representations (1.4). Compliance of the representations (1.4) with the conditions 
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(1.3) follows from the quasi-periodicity of p (z), the equality (1.5) and the relation- 
ships [S] 

(1.6) 

The specified jump in the function o, + iz, v in [- 1, 11 is also assured. This is 
easily detected if the continuity of the kernel oi (5 - 2) - (X - Z)p (5 - Z) t 

5 (z - z) in the fundamental period parallelogram is taken into account. Under the 

condition (1.5) the representations (1.4) must assure the existence of the given mean 

stresses S,, S, and Si2 in D . To this end, let us determine the constants A and B 
from the relationships 

g (2 t q) - g (2) = i I o2 I (& + &49, a = an2 c+ 0.7) 

g (2 + 611) - g (2) = --iw, (S,, + S,eia) 
-- 

g (2) = cp (4 + ,a (4 + $ (2) = cp (4 + 6) (2) -t (2 - Z)@ (2) 

cp(z)=pD(z)dz, qJ(z)=p(Z)dZ 

The combination g (z) turns out to be a quasi-periodic function. Its increment at the 

fundamental periods is found by taking account of the following properties of the func- 

tions in g (2) [4, 63: 
a(z+Q=--_(z)exp{&(z+;)}, v-i,2 (1.8) 

6, = 5 iz + >) - 5 tz) = 2c (; j 

Cl (2 + WY) - L(z) = G5 (2) - q-“2 - c(“* 

Cl.(Z) = - Siplodz 
0 

It is assumed here that the point z lies in the fundamental period parallelogram con- 
taining the origin, and yy* is an insignificant constant in our case. By virtue of (1.4) 

(1.5) and (1.8) we arrive from (1.7) at the system of equations 

(A -t Ah + (B - Ah + a (6, + ~1) t a (6, +&) = (1.9) 
io, (S,, t S,e- ia) - S,f 

(A t A)& + (B -Ah + a (6, + ~2) +” (6, + 6,) = 
-i I o2 1 (S, + S,,e-ia) - S,f 

I 
1 

u == 2z 4 
s XP (4 dx, f- &i xF(x)dx 

-1 

Taking account of the equalities [4, 51 

&CO, - 6,w, = 23x4 ylwz - yzwl = 6pJ0, - 6&z, 

let us represent the solution of the system (1.9) as 

Re A = 4 (a1 + s2) - &f - 6 Re (a&), S = ctlrH (1.10) 
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a, = S, sin a, Z == S,, -j- S, cos a, H = Im ~0~ 

Cl sin a = S, -i_ 2S,, co.5 a + S, CO+ a 

Here G,, us and z are the mean stresses in areas perpendicular to the 05 and oy co- 
ordinate axes. The compatibility condition of the system (1.9) is 

Im f = Im {& 1, XP (5) d”} .= & i (Sy+ - (TV-) Z&J :-;) 0 (1.11) 
1 

Condition (1.11) is satisfied automatically because of the self-equilibrati!~n of the load 
given on the edges of the cracks. 

Therefore, under the conditions (1.5) the representations (1.4) describe a class of doub- 

ly-periodic problems for a plane with cracks. 

2, Algorithm of the rolution of the problem. The stress periodicity 

conditions are satisfied because of the selection of the representations of the desired func- 
tions, hence it is sufficient to satisfy the boundary conditions just on the edges of the 
fundamental crack. These boundary conditions are 

Because of the very con~ruction of the functions (1.4), it is sufficient to satisfy one of 

the conditions (2.1) since the realization of the second of the conditions (2.1) results in 
the same singular equation. Passing to the limit in (1.4) and substituting the limit values 

of the functions (z) and ?&J (z) obtained into one of the boundary conditions (2. l), 

we arrive at a singular equation in /1 (2) 
1 

& 1 p (5 (x - 2,) + j (.z - zo)) dz - 
-1 

(2.2) 

& 1 p(z)~Pl(~--ob-(~ - 50) P fx - xo> + 5 (x - so)1 ds - 
--I 

This equation (more accurateiy, system of equations) is easily reduced to customary form 

if expansions in the main period parallelogram are kept in mind [7] 

(2.3) 
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After simple computations we obtain 

(2.4) 

Kj = Re gi+l, K: = -qqT, -l-8,), Kj’==(j3_1) x 

@j+l - gj+l), j = I,%... 

F (x) = F+ (x) - F- (x), F,(x) = -+ (F+ (a~) + F- (x)} 

The additional condition (1.5). represented in the form 
1 

s 
0(E)dIj, = 0 (2.5) 

-1 

must be added to the singular equation (2.4). 
If the lattice and the external load are symmetric relative to the coordinate axes, then 

(2.4) degenerates into one singular equation in the function 8 (E;} which takes on pure 
imaginary values. In the general case, (2.4) is a system of two singular equations in the 
complex function 0 (Q. 

Let us reduce (2.4) to an infinite system of linear algebraic equations by skipping the 
intermediate step ofregularixation and reduction to a Fredholm equation of the second 
kind. We assume 

B(E) = Vf!! (2.6) 

Where 8, (E) is a Holder-continuous function in [ - 1, 11 . Let us seek BO (E) as a 
series of Chebyshev polynomials of the first kind. We have 

&l(E) = 5 AJ, (8, T, ($J = cos (k arccos E) (2.7) 
k=l 

It is seen directly that the additional condition (2.5) is hence satisfied automatically. 
The relationships for the Chebyshev polynomials of the first and second kinds Tk (El 

and U, (E) are presented below 
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CL 8) 

1 

s al (2s)! = a&, s, k=O,l,.:. 

-1 2”(k-+s)!I’(s--+I) 

f (1 + E)” fmO, (5) dE = 2s (k ;Ts(;sl;‘(;Tkl; 1, = flak, s 

-1 

uk (8 = 
sin [(k + 1) arccos g] 

sin (arccos EJ 

Substituting (2.6), (2.7) into the integral equation (2.4), using the first formula in (2.8) 

and the orthogonality of the functions uk (5) in [-I, I], we arrive at an infinite sys- 

tem of linear algebraic equations in the coefficients A k 

Ac+l - i C,kA, - i C;,& = iH,, k = 0, I,... (2.9) 

n=1 n=1 

l ’ T,, (0 U, (Co) VI-_ 
‘nk = $ 5 ( v/1-2 

K (E -. Eo) dE&o 
-1-l 

! ? Tn (4) U, (40) 1/l - Co* 
c:k = J$ \ \ 1/m K. (E - Eo) &%o 

-1-l 

Hk=+s’ H (Eo) uk 6) VI - LWo 
-1 

The coefficients Cnk, Cnk* can be represented explicitly. By using (2.8) and (2.4) 
we have 

c,I, = 5 (t)“‘? KjUjnk, c;, = 5 (+)a’” Kj’CZj,l, (2.10) 

j=s i=o 

As can be noted, only the quantities aj,2n,2k+l and ~+,s,,+r , ak differ from zero. 
The system (2.9) determines the solution of the problem completely. In conclusion, let 

us note that the substitution E = cos 6 gives the representation (2.7) the customary 
form of a Fourier series in Cos &3 (without the zero term). 

3. Strerr lntenrity frctorr [8, 91, Let us consider a plate with a doubly- 

periodic system of cracks. We assume 

F (2) = 0, F, (4 = 0, 1:E I-l, 11 (3.1) 

Taking account of the third formula in(1.2) and the behavior of the Cauchy type integrals 
in (1.4) at the ends of the lines of integration [lo], we find the stress intensity factors at 
the left and right ends of the cracks: 
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(3.2) 

3; + i32* = lim {(bar + izxy) 1/- 2n (2 + Z)} = 
r-+-z-o 

Results of computations are given in Fig, 2. Curves of the change in tbe stress intensity 

factors 3i versus the relative size of the dommain A==21 /w, (w, = w,eiZf @) are pre- 

sented here. It was assumed that IA = 0.3 
in the computations. 

4. Macrorooplc lattfcs prrrms- 
terl, Let us find the law connecting the 
mean strains and the mean stresses in the lat- 

tice. This law is the Hookds law for a conti- 

nuous anisotropic medium having the same ten- 
sion stjffness as the latice [5]. 

We obtain the increment in the displacements 
in the lattice upon going from the point z to 

its congruent point z + w, fv = 1, 2) by 

taking account of the last formula in (1.2)and 

the relationships (1.7). We have 

Fig, 2 

2G lu (z + 01) - u (z)l = l/d (01 + 02) (x f l)w, - w152 (4.1) 

2G [v (z + 01) - ZJ (z)J = w f (x -t 1) Im (4) 

2G[u(z +02)--u(z)] = +(61+%)(X+ ~wi-~+--haz- 

c [H Tm (a&) - 2n Im aJ, h==Reo, 

2G Iv (z + wz) - u (z)] = t(bl~bn)(X+1)HfhZ--51+ 

Xc [h Im (a&) - 2n Re a], H=Imo, 

On the other hand, the mean strains et, e s, ers and the angle of rotation of the cell w 
in the lattice are related to the displacement increments as follows: 

e1*1 = u (2 + 01) - u (z), (e,, + O)Wl = v (2 + 01) - 0 (2) (4.2) 

e,h + (e,, - o)H = u (2 + WJ - a (2) 

e,H + ( ej2 -j- o)h == u fs -t ~0~) - 2! (z) 

We assume below that the edges of the cracks are free of tractions, 
Let 8, (E) be the solution of f2.4) for H (j$ := - 1, and 0, (g) be the solutionof 
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this equation for H (E) = i. Then the general solution 8 (5) and its corresponding 
functional a are written as 

~j = & \ E’$ (8 dE, i-l,2 
-1 

Substituting the displacement increments from (4.2) into (4.1) and taking account of 

(4.3), we arrive at the law connecting the mean stresses and the mean strains in the lat- 

tice, and also at a formula for the angle of rotation of the fundamental cell 

(4.4) 

(I) = ks Im [(f&H - n) (ups2 + a,T)] (4.5) 

The coefficients of or, os and z in (4.4) are macroscopic elastic lattice parameters. 

It can be shown that the matrix of the macroscopic parameters is symmenic (Im al = 
-Re u2) and energetically admissible [ll]. 

Because of (2.6), (2.7) and (4.3), the func- 

tionals a, and a2 in (4.4) can be expressed 
in terms of the first coefficient in the repre- 

sentation (2.7) by means of the formula 

a1 = &Al”, a2 = $- A?’ (4.6) 

The superscript 1 here corresponds to the so- 
lution of the system (2.9) for H, =- -1, 
Hk = 0 (k = 1, 2, . ..). and the superscript 

2 corresponds to the solution of this system 

for H, = i, H,, = 0. 
The following theorem summarizes all the 

Fig. 3 
above. An unbounded plane isotropic medi- 

um weakened by a doubly-periodic system 
of rectilinear cracks is identical “in the mean” 

to a special anisotropic medium controlled by the law (4.4). 
The lattice under consideration can be interpreted as the model of the medium (4.4) 

and conversely. 
The graphs of the macroscopic parameters 
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for a regular triangular (solid curves) and a square (dashes) lattices correspond to curves 
1 and 2 in Fig. 3 (curves 2 practically coincide for both lattices), In this case the model 

medium is evidently orthotropic, i.e. (azs) = <us,) = 0 
In conclusion, let us note that for h = 0, I 01 1 = 1 Ws i we obtain a medium 

with one crack; as 1 os 1 -+ CXJ we have a periodic system of cracks along the s-axis, 

and finally. for [ q 1 -+ 00 and finite ws we obtain a medium with a periodic system 

of parallel cracks. 

The author is grateful to A,A,Kaliuta for accepting the task of realizing the algo- 

rithm numerically. 
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